Extensions 1→N→G→Q→1 with N=C2 and Q=C4×S32

Direct product G=N×Q with N=C2 and Q=C4×S32
dρLabelID
S32×C2×C448S3^2xC2xC4288,950


Non-split extensions G=N.Q with N=C2 and Q=C4×S32
extensionφ:Q→Aut NdρLabelID
C2.1(C4×S32) = S32×C8central extension (φ=1)484C2.1(C4xS3^2)288,437
C2.2(C4×S32) = C4×S3×Dic3central extension (φ=1)96C2.2(C4xS3^2)288,523
C2.3(C4×S32) = C4×C6.D6central extension (φ=1)48C2.3(C4xS3^2)288,530
C2.4(C4×S32) = S3×C8⋊S3central stem extension (φ=1)484C2.4(C4xS3^2)288,438
C2.5(C4×S32) = C24⋊D6central stem extension (φ=1)484C2.5(C4xS3^2)288,439
C2.6(C4×S32) = C24.63D6central stem extension (φ=1)484C2.6(C4xS3^2)288,451
C2.7(C4×S32) = C24.64D6central stem extension (φ=1)484C2.7(C4xS3^2)288,452
C2.8(C4×S32) = C24.D6central stem extension (φ=1)484C2.8(C4xS3^2)288,453
C2.9(C4×S32) = C62.6C23central stem extension (φ=1)48C2.9(C4xS3^2)288,484
C2.10(C4×S32) = Dic35Dic6central stem extension (φ=1)96C2.10(C4xS3^2)288,485
C2.11(C4×S32) = C62.8C23central stem extension (φ=1)96C2.11(C4xS3^2)288,486
C2.12(C4×S32) = S3×Dic3⋊C4central stem extension (φ=1)96C2.12(C4xS3^2)288,524
C2.13(C4×S32) = C62.47C23central stem extension (φ=1)96C2.13(C4xS3^2)288,525
C2.14(C4×S32) = C62.48C23central stem extension (φ=1)96C2.14(C4xS3^2)288,526
C2.15(C4×S32) = C62.49C23central stem extension (φ=1)96C2.15(C4xS3^2)288,527
C2.16(C4×S32) = Dic34D12central stem extension (φ=1)48C2.16(C4xS3^2)288,528
C2.17(C4×S32) = C62.51C23central stem extension (φ=1)48C2.17(C4xS3^2)288,529
C2.18(C4×S32) = C62.53C23central stem extension (φ=1)48C2.18(C4xS3^2)288,531
C2.19(C4×S32) = C4×D6⋊S3central stem extension (φ=1)96C2.19(C4xS3^2)288,549
C2.20(C4×S32) = C62.72C23central stem extension (φ=1)96C2.20(C4xS3^2)288,550
C2.21(C4×S32) = C4×C3⋊D12central stem extension (φ=1)48C2.21(C4xS3^2)288,551
C2.22(C4×S32) = C62.74C23central stem extension (φ=1)48C2.22(C4xS3^2)288,552
C2.23(C4×S32) = C4×C322Q8central stem extension (φ=1)96C2.23(C4xS3^2)288,565
C2.24(C4×S32) = S3×D6⋊C4central stem extension (φ=1)48C2.24(C4xS3^2)288,568
C2.25(C4×S32) = C62.91C23central stem extension (φ=1)48C2.25(C4xS3^2)288,569

׿
×
𝔽